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This paper investigates the dynamic response of a circularly towed cable–body
system with fluid drag loading. The system model includes non-linear steady state
equations and linear vibrational equations about steady state. The steady state
equations are solved numerically via a shooting technique. The vibrational
equations are linearized and discretized using Galerkin’s method. Numerical
results show the existence of multiple steady state solutions for small fluid drag,
large end mass, or high rotation speed. Divergently unstable solutions lead to
jump phenomena. High rotation speed causes Hopf bifurcations and second mode
flutter for small point mass radius or third mode flutter for large point mass radius.
Generally, increasing drag increases the stable regions. Stable single-valued
solutions always exist for sufficiently low rotation speed.
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1. INTRODUCTION

Circularly towed cable systems have been studied for more than half a century
because of applications in air and marine towed vehicles and their fascinating
dynamic response. Caughey [1] presented an approximate analysis of a whirling
heavy chain in a vacuum, including the whirling mode stability. He noticed the
similarity of the response to that of a hardening spring–mass system. Huang [2]
predicted the existence of multi-valued equilibrium solutions for a cable towed by
an orbiting aircraft in air. Skop and Choo [3] derived the equilibrium equations
of a steadily moving cable–body system and numerically investigated the
multi-valued regions. For a cable towed in water, however, Choo and Casarella [4]
found only single-valued solutions.

The stability of circularly towed cable–body systems was later studied
qualitatively by Russell and Anderson based on a simplified two-degree-of-
freedom lumped-mass model [5]. In reference [6], a finite element model for linear
displacement from the steady state equilibrium quantitatively predicted static
instability, jump phenomena, and dynamic instability of a continuous cable–body
system. Good agreement between numerical and experimental results were detailed
in references [6] and [7].

Zhu et al. [8] recently studied the steady state response and stability of an
extensible string fixed at one boundary and undergoing constant speed circular
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motion at the other boundary. The influence of air drag on ballooning strings
was also investigated [9]. In these papers, divergent and flutter instabilities were
predicted and verified experimentally.

The dynamics of the circularly towed cable–body system is re-investigated in this
paper using an approach different from that of reference [6]. Based on Newton’s
law, the steady state and perturbed vibration equations are derived. The steady
state equations are solved numerically via a shooting method and the perturbed
vibrational equations are approximated using Galerkin’s approach. The effects of
various parameters on the steady state solutions and their stability are discussed.
Some results are compared qualitatively with Russell and Anderson’s experiment
in references [6] and [7].

2. EQUATIONS OF MOTION
Figure 1 shows a schematic diagram of the towed cable–body system. A cable

of length L undergoes constant speed circular motion V at the top boundary
(e.g., attached to a ship or plane) and attaches to a point mass at the bottom
(e.g., towed vehicle or payload). The radius of the circular path is denoted as a.
The Cartesian co-ordinate system axes i, j, and k rotate at V about k. The
co-ordinates are chosen to align the steady state point mass position with the
X-axis. Thus, Xd represents the radius of the steady state point mass motion.
The vertical distance between the two ends of the cable is denoted by H.

The vector R1(S0)=X(S0)i+Y(S0)j+Z(S0)k locates the steady state
configuration where S0 is the unstressed arc length co-ordinate measured from the
point mass. The perturbed configuration is located by R2(S0, T) with T the time.
The relative displacement between these two configurations is

U(S0, T)=R2 −R1 =U1i+U2j+U3k. (1)

By definition, the strains in the cable are

ei =
1Si

1S0
−1, (2)

where i=1 or 2 for the steady state and perturbed configurations, respectively,
and Si is the corresponding arc length co-ordinate. Lagrangian strains are

ei =
1
2 01Ri

1S0
·
1Ri

1S0
−11. (3)

The tension vectors are tangent to the cable,

Pi =Pi
1Ri

1S0 01Si

1S01
−1

, (4)

and for a linearly elastic material,

Pi =EA0ei , (5)
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Figure 1. Schematic diagram of a circularly towed cable–body system.

where E is Young’s modulus and A0 is the cross-sectional area of the unstressed
cable. Substitution of equations (5) and (2) into equation (4) gives

P2 =
P1e2

e1(1+ e2)
1R2

1S0
. (6)

The strains are assumed small so that 1+ ei 1 1. Based on Newton’s law, the
cable’s equation of motion is

1P2

1S0
+Fw +FI +FD =0, (7)

where the gravitational force, inertial force, and normal hydraulic drag,
respectively, are

Fw =−rbA0gk, (8)
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FI =−raA06V2k×(k×R1)+V2k×(k×U)+2Vk×
1U
1T

+
12U
1T27, (9)

FD =−Dn =V f
n =V f

n. (10)

The cable mass densities rb and ra include buoyancy and added mass from the
fluid, respectively. Dn is the drag coefficient and V f

n is the normal velocity given
by

V f
n =

1R2

1S0
×001U

1T
+Vk×(U+R1)1×

1R2

1S01. (11)

The tangential drag component is assumed negligibly small to simplify analysis.
Russell and Anderson [6] included tangential drag in their model and obtained
good agreement with experiments. The tangential drag coefficient, however, was
less than 3% of the normal drag coefficient. A good match between the theory
and experiment was also obtained for rotating strings with fixed ends by neglecting
the tangential drag component [9].

Substitution of equations (1), (6), and (8)–(10) into equation (7) with the small
strain assumption and rearrangement yields

1

1S0 0P1e2

e1 01R1

1S0
+

1U
1S011

= raA06V2k×(k×R1)+V2k×(k×U)+2Vk×
1U
1T

+
12U
1T27

+ rbA0gk+Dn =V f
n =V f

n. (12)

Non-dimensionization produces

1

1s 0pe2

e1 01r
1s

+
1u
1s11

= rk+v2$k×(k× r)+ k×(k× u)+2k×
1u
1t

+
12u
1t2 + dn =v f

n =v f
n%, (13)

where

r= xi+ yj+ zk=
R1

a
, s=

S0

a
, u=

U
a

, t=VT, (14)

v2 =
aV2

g
, r=

rb

ra
, dn =

Dn

raA0
, p=

P1

raA0ag
, g=

E
raag

, (15)

e1 =
p
g
, e2 = e1 +

1r
1s

·
1u
1s

+
1
2

1u
1s

·
1u
1s

, (16)
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v f
n =

1(r+ u)
1s

×001u
1t

+ k×(u+ r)1×
1(r+ u)

1s 1. (17)

The second equation of equations (16) is obtained by using equation (3).
The natural boundary condition associated with the point mass is

P2 +Fdw +FdI +FdH =0, (18)

where the point mass net weight in the fluid, inertial force and fluid drag are,
respectively,

Fdw =−Wk, (19)

FdI =−M0V2k×(k×R1)+V2k×(k×Ud )+2Vk×
1Ud

1T
+

12Ud

1T2 1, (20)

FdH =−Db1Ud

1T
+Vk×(Ud +R1)b01Ud

1T
+Vk×(Ud +R1)1. (21)

where Ud =U(0,t). The weight (including buoyancy), mass (including added
mass), and fluid drag coefficient of the point mass are W, M, and D, respectively.

Substitution of equations (6) and (19)–(21) into equation (18) and
non-dimensionalization gives

pde2

e1 01r
1s

+
1ud

1s 1
=wk+mv20k×(k× r)+ k×(k× ud )+2k×

1ud

1t
+

12ud

1t2 1
+ dv2b1ud

1t
+ k×(ud + r)b01ud

1t
+ k×(ud + r)1, (22)

where pd is the cable tension at s=0,

w=
W

raaA0g
, m=

M
raaA0

, d=
D

raA0
, and ud =

Ud

a
. (23)

The following boundary conditions complete the model:

x=Xd /a= xd , y= z=0, at s=0, (24)

x2 + y2 =1, u=0, at s=L/a= l. (25)
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3. STEADY STATE SOLUTIONS

In steady state, the displacement u= 0, so equation (13) simplifies to

d
ds 0p dr

ds1= rk+v2[k×(k× r)+ dn =vi
n=vi

n], (26)

where

vi
n =

dr
ds

×0(k× r)×
dr
ds1. (27)

The elasticity parameter g does not appear in equation (26) because the small strain
assumption neglects the cable extension. Zhu et al. [8] discussed the effect of
extensibility on a similar rotating system.

The steady state point mass equation is

pd
dr
ds

=wk+mv2k×(k× r)+dv2=k× r=(k× r). (28)

Equation (28) contains three scalar equations:

dx
ds

=−v2 mxd

pd
,

dy
ds

=dv2 x2
d

pd
,

dz
ds

=
w
pd

. (29–31)

The square sum of these equations gives

pd =v2Xm2x2
d +(dx2

d)2 +0w
v21

2

. (32)

Similarly, the scalar equations in equation (26) are

px,ss =−p,sx,s +v2{−x− dn =vi
n=[y− x,s (yx,s − y,sx)]}, (33)

py,ss =−p,sy,s +v2{−y+ dn =vi
n=[x− y,s (xy,s − x,sy)]}, (34)

pz,ss = r− p,sz,s +v2dn =vi
n=[z,s (yx,s − y,sx)], (35)

where ( · ),s =d( · )/ds and

=vi
n==[z2

,s(x2 + y2)+ (xx,s + yy,s )2]1/2. (36)

Dot multiplication of equation (26) and application of the relations

dr
ds

·
dr
ds

=1,
dr
ds

·
d2r
ds2 =0,

dr
ds

· vi
n =0,

dr
ds

· (k×(k× r))=−
1
2

d
ds

(x2 + y2),
dr
ds

· rk=
d
ds

(rz),

gives the steady state cable tension

p= pd + rz+
v2

2
(x2

d − x2 − y2). (37)
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Note that the simple, closed form expression for tension in equation (37) results
from neglect of the tangential air drag.

For the simple case of a neutrally bouyant cable without drag (i.e., r=0, and
dn = d=0), the steady state solution is planar and can be solved exactly using
Jacobian elliptical sine functions (see Appendix A). In general, however, the steady
state solution is not planar and the non-linear differential equations (33)–(35) are
solved numerically via a shooting technique. A Runge–Kutta fourth order
integrator integrates the equations from s=0 until s= l. Equations (24) and
(29)–(31) provide six initial conditions with xd as an initial guessed value. The value
of xd that minimizes the error, x(l)2 + y(l)2 −1, is determined using an
optimization algorithm in MATLAB. Using a wide range of initial values for xd

ensures discovery of multiple solutions.

4. LINEARIZED EQUATION OF VIBRATION

Substitution of equation (16) into equation (13), elimination of the non-linear
u(s, t) terms, and cancellation of the steady state terms results in the linearized
vibration equation,

1

1s $g01r
1s

·
1u
1s1 1r

1s
+ p

1u
1s%

=v26k×(k× u)+2k×
1u
1t

+
12u
1t2 + dnJvn7. (38)

Similarly, equation (22) linearizes to

g01r
1s

·
1ud

1s 1 1r
1s

+ pd
1ud

1s

=mv20k×(k× ud )+2k×
1ud

1t
+

12ud

1t2 1+dv2Jd01ud

1t
+ k× ud1, (39)

where the Jacobian matrices J and Jd are given in Appendix B.
Rewriting equations (38) and (39) in operator form yields

$I0 0
I%6 ü

üd7+$G0 0
Gd%6 u̇

u̇d7+$K0 0
Kd%6u

ud7= 0, (40)

where the matrix operators are defined in Appendix C.
Galerkin’s method is used for numerical stability analysis. The displacement

field is represented by an N-term separable series of the form

uk (s, t)= s
N

j=1

hjk (t)uj (s) (k=1, 2, 3), (41)
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where the comparison functions are

uj (s)= sin (bj (l− s)/l), (42)

and bj is the natural frequency of a string with one end fixed and the other end
attached to a mass (see Appendix D). Substitution of equation (41) into equation
(40) and application of Galerkin’s method provides the discretized equation

M� ḧ �+G� ḣ �+K� h� = 0� , (43)

with h� =[h11, h12, h13, h21, . . . , hN3]T.
The eigenvalues (l) of

A=$ 0
−K�

M�
−G� %

are determined using MATLAB. The matrices K� and G� depend on the associated
steady state configuration. Stable steady state solutions have eigenvalues with
negative real parts. Eigenvalues with positive real parts and non-zero imaginary
parts signify flutter (or dynamic) instability. A positive real eigenvalue indicates
divergent instability.

5. NUMERICAL RESULTS

The non-dimensional cable equation (13) and point mass equation (22) depend
on five (v, r, dn , g, and l) and three (w, m, and d) parameters, respectively. In
this paper, the effects of non-dimensional rotation speed (v), cable fluid drag (dn ),
cable length (l), and point mass (m) are investigated. Throughout the calculation,
g=600, N=8, and d=0·1dn are used. In addition, the fluid mass density is
assumed to be negligibly small relative to the cable and point mass so r=1 and
m=w.

5.1.   

First, the effect of fluid drag on the steady state solutions and their dynamic
stability is investigated. The non-dimensional parameters are l=3, g=600, and
m=3·5.

The solution curves of the verticality v= h/l versus the rotation speed v are
plotted in Figure 2(a) for dn =0·8, 1, 2, and 6. At low rotation speed, only one
solution exists. When vq 1, multiple solutions are found for low drag values. As
drag increases, the peak value of verticality increases for 0·5QvQ 1·2. For
vq 1·2 the verticality decreases with increasing dn except for the bottom curves
for dn =0·8, where the multiple solutions still exist. Verticality is insensitive to fluid
drag at v=0·47 and v=1·15. The corresponding curves of the point mass radius
xd versus rotation speed are plotted in Figure 2(b). Solid, dotted, and dash-dotted
lines signify stable, divergently unstable, and dynamically flutter unstable
solutions, respectively. Generally, configurations with large point mass radius have
small verticality and vice versa. Increasing rotation speed first increases and then
decreases the point mass radius when dn is not small. As dn increases, the maximum
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Figure 2. (a) Steady state verticality v= h/l versus rotation speed v for four dn values. The system
parameters are l=3, g=600, r=1, d=0·1dn , and m=w=3·5. (b) Steady state point mass radius
xd versus rotation speed v for four dn values. Solid, dotted, and dashed-dotted curves represent stable,
divergently unstable, and flutter unstable steady state solutions, respectively.
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point mass radius decreases. As reported by Choo and Casarella [4], unique
solutions exist for sufficiently large fluid drag. In all cases, however, there is a wide
speed range with no stable solutions.

Figure 3 shows the root locus of the first two eigenvalues versus rotation speed
for dn =1. At low speed (A), the eigenvalues are in the left half plane. The first
eigenvalue decreases, becomes zero, and at B, the real part becomes positive.
Between B and C the positive real eigenvalue signifies divergent instability. The
solutions between C and D are stable as indicated by the root locus. When v

increases to 1·735 at point D, however, one of the eigenvalues crosses the
imaginary axis and enters the right half plane. Thus, a Hopf bifurcation occurs
and leads to flutter instability. The unstable eigenvalue is greater than the stable
eigenvalue, indicating second mode flutter in the range (D–E). The solution curves
for dn =2 and dn =6 in Figure 2(b) do not show second mode flutter in this speed
range. The stability of the steady state configurations for dn =0·8 is similar to that
of dn =1 except that most configurations with large point mass radius lose stability
by third mode flutter for vq 2·02.

Experiments conducted by Russell and Anderson [6, 7] qualitatively verify the
results. For small air drag, stable steady state configurations are obtained in the
regions corresponding to AB and CD but not BC in Figure 3 (see Figure 4 of
reference [6]). Multiple steady state solutions disappear when the air drag is large
(e.g., dn e 2 curves in Figure 2(b)). For dn =6, the stable regions corresponding
to 0QvQ 1·59 and 3evq 2·01, and the flutter unstable region corresponding
to 1·59QvQ 2·01 in Figure 2(b) agree with the results shown in Figure 5.5 of
reference [7].

Figure 3. Root locus for the steady state solutions in Figure 2(b) with dn =1. For clarity, purely
real roots are staggered with respect to the real axis.
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Figure 4. Steady state verticality v= h/l versus rotation speed v for three point mass values. Solid,
dotted, and dashed-dotted curves represent stable, divergently unstable, and flutter unstable of the
steady state solutions, respectively. The system parameters are l=3, g=600, r=1, d=0·1, dn =1,
and m=w.

5.2.   

Second, the effect of the point mass on the steady state solutions is studied.
Figure 4 shows point mass radius versus rotation speed for l=3, g=600, r=1,
and dn =1.

Again, the solid curves represent stable solutions while the dotted and
dash-dotted curves denote divergent and flutter instabilities, respectively. Note
that both the steady state solutions and stability are similar to those in Figure 2(b).
Therefore, increasing m with unchanged damping is similar to decreasing the fluid
drag with constant tip mass.

5.3.   

Finally, the effect of cable length is investigated with g=600, r=1, dn =1
and m=3·5.

Figure 5(a) shows the verticality versus length for three rotation speeds. By
increasing the length, the verticality decreases, increases, and then decreases again.
Multiple jump phenomena appear at high rotation speeds. Figure 5(b) shows the
point mass radius increasing, jumping or decreasing, and finally approaching zero
with increasing length. Low rotation speed leads to stable single-valued solutions
and high rotation speed results in multiple solutions with varied instabilities.
Figure 6 plots the root locus of the first three eigenvalues for v=2·5. The system
is stable from A to B, third mode flutter unstable from B to C, first mode divergent
unstable from C to D, and second mode flutter unstable from D to E.
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Figure 5. (a) Steady state verticality v= h/l versus cable length l for three rotation speeds v. The
system parameters are g=600, r=1, d=0·1, dn =1, and m=w=3·5. (b) Steady state point mass
radius xd versus cable length l for three rotation speeds v. Solid, dotted, and dash-dotted curves
represent stable, divergently unstable, and flutter unstable steady state solutions, respectively.
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Figure 6. Root locus for the steady state solutions in Figure 5(b) with v=2·5. For clarity, purely
real roots are staggered with respect to the real axis.

6. CONCLUSIONS

Multiple equilibrium solutions for a circularly towed cable–body system exist
when the fluid drag is small, point mass is large, or rotation speed is high.
Divergently unstable solutions lead to jump phenomena. High rotation speed
causes Hopf bifurcations and second mode flutter for small point mass radius and
third mode flutter for large point mass radius. Generally, increasing fluid drag
increases the stable regions. Sufficiently low rotation speed ensures stable
single-valued steady state solutions.
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APPENDIX A: EXACT PLANAR STEADY STATE SOLUTION

Neglecting the cable weight in the fluid and the drag (i.e., r=0 and dn = d=0)
constrains the steady state solution to the x–z plane with

(px,s ),s =−v2x, (pz,s ),s =0, p= pd +
v2

2
(x2

d − x2). (A1–A3)

The corresponding boundary conditions are

x(0)= xd , z(0)=0, xs (0)=−v2 mxd

pd
, z,s (0)=

w
pd

, x(l)=1,

(A4)

with

pd =zv4m2x2
d +w2. (A5)

Elimination of s from equations (A1) and (A2) gives

dz
dx

=
C

zp2 −C2
, (A6)

where C is an integration constant. From equation (A4),

dz(0)
dx

=−
w

v2mxd
=

C

zp2
d −C2

,

and, using equation (A5),

C=−w. (A7)

Transformation of

x̄=
x

z2(pd +0·5x2
dv

2 −C)
and z̄=

zpd +0·5x2
dv

2 +C

z2C
z (A8)

in equation (A6) gives

dz̄
dx̄

=
1

z(1− x̄2)(1− k2x̄2)
, (A9)
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where

k2 =
pd +0·5x2

dv
2 −C

pd +0·5x2
dv

2 +C
. (A10)

Integration of equation (A9) yields

z̄=g
x̄

0

dx̄

z(1− x̄2)(1− k2x̄2)
,

or

x̄=sn (z̄). (A11)

where sn is the Jacobian elliptical sine function [10]. The boundary conditions
x=1 and z=H/a= h at s= l provide

l=g
h

0
X1+

1
C2 (pd +0·5x2

dv
2 +C)(pd +0·5x2

dv
2 −C)$d(sn (z̄))

dz̄ %
2

dz, (A12)

1

z2(pd +0·5x2
dv

2 −C)
= sn 0zpd +0·5x2

dv
2 +C

z2C
h1. (A13)

Solution of equations (A12) and (A13) gives h and xd . The cable steady state
configurations are calculated from equation (A11).

APPENDIX B: JACOBIAN MATRIX

In equation (17), v f
n can be expressed as

v f
n = vi

n + vn , (B1)

where vi
n is defined by equation (27) and equation (B1) defines vn .

Linearization of the air drag force produces

dn =v f
n =v f

n = dn (=vi
n=vi

n + Jvn ),

where the Jacobian Matrix is

J=
1(=v f

n =v f
n )

1v f
n bvn =0

= &J1 J2 J3

J2 J4 J5

J3 J5 J6'= =vi
n=I+

1
=vi

n= & x2
1

x1x2

x1x3

x1x2

x2
2

x2x3

x1x3

x2x3

x2
3 ',

and

x1 =−y+ x,s (yx,s − y,sx), x2 = x− y,s (xy,s − x,sy), x3 = z,s (yx,s − y,sx),

=vi
n==zx2

1 + x2
2 + x2

3 ,

and I is the unit matrix.
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To calculate Jd , one has

v f
d = vi

d + vd ,

where

vi
d = k× r and vd =

1u
1t

+ k× u.

Hence,

Jd =
1(=v f

d =v f
d )

1v f
d bvd =0

=zy2 + x2I+
1

zy2 + x2 & y2

−xy
0

−xy
x2

0

0
0
0'.

At s=0, y=0, x= xd , one has

Jd = &xd

0
0

0
2xd

0

0
0
xd'.

APPENDIX C: MATRIX OPERATORS

In equation (40), G is defined as

G=(G0 + dnD),

where

G0 = &020 −2
0
0

0
0
0',

D(1, 1)=−J2x,sy,s + J1y2
,s + J1z2

,s − J3x,sz,s ,

D(1, 2)=−J3y,sz,s + J2z2
,s + J2x2

,s − J1y,sx,s ,

D(1, 3)= J3y2
,s − J2z,sy,s − J1z,sx,s + J3x2

,s,

D(2, 1)= J2z2
,s + J2y2

,s − J4x,sy,s − J5x,sz,s ,

D(2, 2)=−J5y,sz,s − J2x,sy,s + J4z2
,s + J4x2

,s,

D(2, 3)=−J4z,sy,s + J5y2
,s + J5x2

,s − J2z,sx,s,

D(3, 1)=−J5x,sy,s − J6x,sz,s + J3y2
,s + J3z2

,s,

D(3, 2)=−J6y,sz,s − J3y,sx,s + J5x2
,s + J5z2

,s,

D(3, 3)=−J3x,sz,s − J5y,sz,s + J6y2
,s + J6x2

,s.
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The matrix operator K is

K=K0 + (Ks + dnKs0)
1

1s
+Kss

12

1s 1s
,

where

K0(1, 1)=−1+ dn (J2x2
,s + J2z2

,s − J3y,sz,s − J1y,sx,s ),

K0(1, 2)= dn (J2x,sy,s − J1z2
,s + J3x,sz,s − J1y2

,s),

K0(2, 1)= dn (−J5y,sz,s − J2x,sy,s + J4z2
,s + J4x2

,s),

K0(2, 2)=−1+ dn (J5x,sz,s − J2y2
,s − J2z2

,s + J4x,sy,s ),

K0(3, 1)= dn (−J6y,sz,s − J3y,sx,s + J5x2
,s + J5z2

,s),

K0(3, 2)= dn (−J3z2
,s + J6x,sz,s + J5x,sy,s − J3y2

,s),

K0(1, 3)=0, K0(2, 3)=0, K0(3, 3)=0,

Ks =
1
v2 & −p,s −2gx,sx,ss

−g(xsy,ss + x,ssy,s

−g(x,sz,ss + x,ssz,s )

−g(x,sy,ss + x,ssy,s )
−p,s −2gy,sy,ss

−g(y,sz,ss + y,ssz,s )

−g(x,sz,ss + x,ssz,s )
−g(y,sz,ss + y,ssz,s )

−p,s −2gz,sz,ss ',
Ks0(1, 1)=2J2xx,s + J3yz,s − J1y,sx+ J2yy,s ,

Ks0(1, 2)=−2J1yy,s − J1xx,s + J2x,sy− J3xz,s ,

Ks0(1, 3)=−2J1yz,s + J3x,sy− J3y,sx+2J2xz,s ,

Ks0(2, 1)= J4yy,s +2J4xx,s − J2y,sx+ J5yz,s ,

Ks0(2, 2)=−J2xx,s + J4x,sy− J5xz,s −2J2yy,s ,

Ks0(2, 3)=−J5y,sx+ J5x,sy−2J2yz,s +2J4xz,s ,

Ks0(3, 1)=−J3y,sx+ J5yy,s +2J5xx,s + J6yz,s ,

Ks0(3, 2)=−J3xx,s − J6xz,s −2J3yy,s + J5x,sy,

Ks0(3, 3)=−2J3yz,s +2J5xz,s −2J6y,sx+ J6x,sy,

Kss =
1
v2 &−gx2

,s − p
−gx,sy,s

−gx,sz,s

−gx,sy,s

−gy2
,s − p

−gy,sz,s

−gx,sz,s

−gy,sz,s

−gz2
,s − p'.

Finally, Gd and Kd are given by

Gd =
1
m &dxd

2m
0

−2m
2 dxd

0

0
0

dxd',
Kd =Kdo +Kds

1

1s
,
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where

Kdo =
1
m &−m

2 dxd

0

−dxd

−m
0

0
0
0',

Kds =
1

mv2 &−gx2
,s − p

−gx,sy,s

−gx,sz,s

−gx,sy,s

−gy2
,s − p

−gy,sz,s

−gx,sz,s

−gy,sz,s

−gz2
,s − p'n

s=0

.

APPENDIX D: COMPARISON FUNCTIONS

Consider the constant tension cable equation

pdu,ss = u,tt , (D1)

subjected to the boundary conditions

u(l,t)=0 and pdu,s (0,t)=mu,tt (0,t). (D2)

The assumed solution

u=sin 0b l− s
l 1 eiat (D3)

yields a frequency equation

cos b=m
b

l
sin b (D4)

with an infinite number of solutions bi . The comparison functions used in equation
(41) are

uj (s)= sin 0bj
l− s

l 1. (D5)


